
I·
I
I

VOL. 7 NO. 1

All for One, 24 ona lor All
Plug 'n Play 011_.: 34 Standards First

Building Your Own 45 SQL Generator
Classical Logic: 54 Nothing Compares 2 u

EDITOR'S BUFFER

ACCFSSPATII

DATABASE DESIGN

ACCORDING TO DATE

CLIENT / SERVER FORUM

DESKTOP DATABASE

ANNUAL INDEX

PRODUCT WATCH

JANUARY 1994

PEGGY WAIT

How does database fit into the emerging

groupware paradigm- and will it work?

JOHNV AN DEN HOVEN

lf ODBC, SAG, and IDAPI are still alplulbd

soup to you, MR's help sorting it out.
.

DoN BURLBSON.

For do--it-~lfm, all it takes it-• d!J6c. of

sar.. SDnl4' mx, • • little 1moa>-1weo..

DAVID Ml:GOvmtAN

Are you '$111'6 p want your. RDBMS . . .
llS80Cilztillgwith ~~d logic?!

MllSSively P"'iillel processing rtJba.

The goods on Knowledg~Wllre's Flahpoint.

A sihject inda of 1993 llrlicles ll1Ui cobarrni.

~

DATABASE PROGRAMMING l DESIGN (ISSN ~18) is pulllbhed mon~ ~t In October. wl'ilcll 11 wnHllOl#lt(Intl cornn .. DATABASE FWJGAAMMINO l DESIGN au,.
er's Guidi. by Milter Fl8MW\ tnc.. 600 Hamlen St. Sen ff8nciaco. CA 94107, (415) 906-2200. ,,.._ dftct advw1lllng nl edllorlll tnqUrlla to tllll ~ Rlf ~ lnqlklel. cal
(eoQ) 289-0169 (OUISkle U.S. (300) 447·9330) . SUBSCRIPTION RATE lot the U.S. Iii $47 !or 13 llel-. Cenadlln/Meiilcen «Cln ,_ be Dl..id In U.S. Mell wllh liClllllor* P<*9Qe at
$6 per)'Mr. Canedten GST P8<mft #12"513185. Alt o1her countries out9lde the U.S. must be i)l9pilld In U.S. Uldl wl1tl ~ poltlgl at $15 pir ~ ior..-. mlil Of "40 per)199' lor •
mail POSTMASTER: Send add<eee chenoee to DATABASE PROGRAMMING & DESIGN, P.O. Box 53481, Bouldlr. CO 80322-3481. For qlACl<8ll .W.. cmll IDlfte (800) 2:8&-0189 (1n
ColoradO ot outside the U.S. (303) 447-9330). P1eeae a110w six "9kl for chanQa of adct.- to take tfllcl SECON> CLASS POSTAGE p.io at San FflnCllcQ, CA 94107 end et acdtlonlif
malling offlcea. DATABASE PROGRAMMING & OESIGN·is a regjlt....:t tnlderTWlc owned by the .,...nt ~,..., RMnwl tnc. All,,,._~ In DATAISME PROORAMMINO &
DESIGN II COpy'1ghted • 1994by Millet Freeman Inc. All~ r--..c1 ~ ol meterlll ~in DATABA.Se PROGRAMMINQ l DESIGN II~"""'°"'....-.. 16rrrn
miero~lm. 35mm mictolltm. 105mm mtcroflche Ind IW1lc:le Ind-.. photooopiel n a"8ilatlle trom lklMnlty MICIOlrra nllm8tlOnal 300 H. ZMb Rl1. Am Altar. Iii 48108 (313) 761-4700.

DATABASE PROGRAMMING & DESIGN
3 '

I I I I I I I I I I I I I I I I I
BY DAVID McGOVERAN

If the true power of the relational model is its foundation in classical
logic, why do RDBMSs use multivalued logi.c-and betray that strength?

lassica Logic:
Nothing

om ares
IN PART I OF THIS

series last month, I
provided a brief tutorial on logic for
database practitioners. Now, having
laid the foundation, we may move
on to see why the current han
dling of missing information using
many-valued logic is misguided. AJ
though numerous many-valued log
ic systems exist, it is my central
thesis that no many-valued logic will
be suited to a DBMS's needs. By con
trast, the propositional logic meets
all the objectives I presented in
Part I (see the sidebar, "Objectives,"
page 60).

To understand this thesis, we
must determine whether the prop
erties of a many-valued logical sys
tem can meet the objectives set out
in Part I for a DBMS as a logical
system. To simplify our quest, we
will examine only the properties
of many-valued propositional log
ics. We may confine our examina
tion in this manner for three rea
sons. First, we can understand any
many-valued predicate logic as a
generalization of a corresponding
many-valued propositional logic;

and so, certain problems with pro
. positional logic version carry over
to the predicate logic version. Sec
ond, real databases are finite; at
the worst, only a very restricted
version of the first-order predicate
calculus (one without infinite do
mains and values) must be used.
To reiterate a point (one I did not
elaborate on in Part I), the kinds of
expressions permitted via real data
base queries are limited. ~pecifi
cally, only a fixed number of types
of variables and a fixed number of
possible values for each of those
types, and well-formed formulas
(wffs). of some maximum length
are supported (ever write a query
the DBMS found too big to parse?).
Therefore, only some finite, possi
bly large number of propositions
can ever be expressed as queries.
Third, the formal investigation of
many-valued predicate logic is im
mature; comparatively few such in
vestigations exist.

C. J. Date has written exten
sively about the problems associat
ed with E. F. Codd's (and SQL's)
version of many-valued logic. The

JANUARY 1994
54

discussion here is more general.
Codd's so-called four-valued logic
(4VL) (and even worse, the "three
valuedness" of SQL) is ill-defined,
as I will show later in this article.
For this reason, I cannot address
formal arguments against any spe
cific formal flaws! My arguments
are forced to be general and apply
to formal and informal problems
that arise in using any many-valued
logic for database work.

LEAVING NOTHING
To begin the examination, it is im
portant to understand the similari
ties and differences of many-valued
logics. Most three-valued systems
are identical in their definitions of
"AND," "OR," and " NOT," but differ
with respect to the truth table
definitions for other connectives,
which connectives they take as
primitive, and which rules of in
ference apply.

For purposes of informal ex
planation, a three-way classifica
tion of propositional many-valued
logics will be u seful, letting us
take a divide-and-conquer approach

to investigating the use of many
valued logics for database use. The
classification scheme is based on
the following reduction procedure:
allow the components of every wff
in the logic to take only "TRUE" or
"FALSE" as the truth values, and
compare the resulting logical sys
tem to the propositional logic. The
classes, slightly nonstandard and
informal, follow:

0 Fragment. A many-valued
logic will be classified as a frag
ment if, under the reduction pro
·cedure, it reduces to a fragment of
the propositional logic, by which
we mean that some propositional
logic connectives or rules of ~nfer
ence are missing, or some proposi
tional logic theorems or tautolo
gies no longer hold.

0 Extension. A many-valued
logic will be classified as an exten
sion if it reduces to the proposi
tional logic under the reduction
procedure.

0 Deviant. A many-valued log
ic will be classified as a deviant if
it is so different from the proposi
tional logic that it cannot be un-

I I I I I I I I I I I I I I I I I

derstood either as an extension or
a fragment. A number of well
known (and often referenced)
many-valued logics cannot be treat
ed either as extensions or fragments
of the propositional logic. These
entirely different logical systems
(the deviants) do not satisfy the fa
miliarity objective (see the side
bar), and are either not truth func
tionally complete or have difficult
to-understand semantics. I will come
back to this type of many-valued
logic shortly.

FRAGMENTS
Fragments are generally not truth
functionally complete and, in ad
dition, require that users under
stand which portions of the propo
sitional logic do not apply. Th is
fact means that fragments neces
sarily violate the familiarity objec
tive. To see why, we must under
stand a special type of one-place
many-valued logic operator that is
called the Slupecki T-function. A
T-function is a one-place connec
tive that converts every possible
truth value to some particular one

DATABASE PROGRAMMING & DESIGN
SS

of the nontrue, nonfalse truth val
ues (that is, to "UNKllO'Mi" in a three
valued logic [3VL] . All many
valued logics must contain the T
function to be truth functionally
complete; but, adding this connec
tive will at best convert the frag
ment into an extension, and possi
bly into a deviant. A meaningful
interpretation of this function for
database use is hard to imagine;
this fact alone makes it unreason
able to expect a many-valued logic
to meet our needs.The inclusion
of the T-function and certain tau
tologies that may be implied · by it
creates a logical system that clearly
violates the familiarity objective.

EXTENSIONS
The familiarity objective requires
that the truth tables for the var
ious many-valued propositional
connectives of an extension reduce
to those connectives for the two- !
valued propositional logic under ~
the reduction procedure (refer to !
Figure 1). Clearly, this property is Iii
highly desirable in a logic used by I
a DBMS. However, a many-valued <

I I I I I I I I I I I I I I I I I

" '"
,.,. MOT

~
:

T u F I~ T u F p NOT P

T T u F T T T T T F

u u u F u T u u u u
F F F F F T u F F T

HGURE 1. Reduction of three- to two-valued logic.

in a particular query, all queries
become indefinite in meaning (ex
cluding the rather bizarre possibil
ity that the table containing the
null has no relationship whatso
ever to the tables accessed). One
null, anywhere in the database,
changes the meaning of all related
tables, violating the uniformly in
terpretable objective! This viola
tion occurs because we can no
longer think of the accessed tables
as though they simply contain
rows representing facts about the
universe .of discourse; each row
now represents a fact having rela·
tionships to missing information.

logic can reduce to classical propo
sitional logic if and only if it is not
truth functionally complete! By
definition, every connective in a
truth functionally complete logical
system must be expressible, either
directly (as a primitive operator)
or indirectly (by composing primi
tive connectives). As already not
ed, the T-function must be ex
pressible in truth functionally
complete many-valued logics. Un
fortunately, it has no counterpart
in two-valued logics even under
the reduction procedure. There
fore, either the familiarity objec
tive or the truth functional com
pleteness objective is violated by
extensions.

EXTENSIONS AN D DEVIANTS
The familiarity objective is actual
ly more difficult to satisfy than the
previous information would indi
cate. Both extensions and deviants
violate the uniform interpretabi
lity objective. Under the reduction
procedure, few many-valued log
ics preserve the tautologies and
rules of inference most commonly
relied upon by database users to
reason with queries (see Figure 2).
(Of course, users may not realize
how much they depend on these
rules!)

We must consider two impli·
cations: First, violated proposition
al tautologies must never be used
-implicitly or explicitly-when
working w ith a database using
such a logic. Thus, extensions and
deviant logics are less intuitive
than the propositional logic, and,
for practical purposes at least, are
less deductively powerful as well.
Second, permissible rules of infer
ence (ones used by the user and
the optimizer) must be sensitive to
whether or not the database per
mits nulls and /or actually contains
nulls.

If the DBMS does not permit
nulls, we can use the familiar pro
positional logic and never even
need to learn the ·many-valued
logic. But, if nulls could exist in
the database, the many-valued log
ics rules of inference must be used
from the beginning. The mean
ings of query results are then defi
nite as long as nulls do not actual
ly appear in the database, and the
uniformly interpretable objective
can be preserved.

Once nulls are permitted to
appear, even in tables not accessed

For example, consider the
parts-suppliers database in Figure
3. If the database did not contain
the shaded row in the Suppliers
relation, the results of all queries
would have a definite and fairly
intuitive meaning. But with the
shaded row permitted, the very
meaning of parts and suppliers
changes! In particular, parts are no
longer definitely located in a

.. ;··~~.~~ft~ . pa (P +Q) +Q

·altiftHfo tllleas .- -~ a (P +Q) + :-P
. ed11toli1Rcio ponens · -'P a ·(P v Q) .+Q

.;1.a1r ot.itaaJllftclitlon p & Q _..P ·
:~:~:Afiui~uon P a a +P & Q _ . ._
;;t.aw .. Hyp-~Ucal Syllogism (P +-Q) & (Q + R)·+(P. +R)
' Law .olExportatlon .. [P & Q +Al +[P +'ca +A)]

t, law oUmportallon . ; .. •t P +(Q +R)] +(P. a o +AJ
•- law of Allaurflty 1P +o & - QJ +-P
~ .law of AddJtlan P +(P v Q)

Law of Double Negation
Law of Contraposltion
OeMoroaes's laws

Commutative Laws

Law of Equivalence for

•P+--P
(P +O)~(-Q +-P)

- (P V Q) +(· P & -Q)
·(P & Q) +(-P V -0)
p & Q+O & p
P v o +o v P

Implication and Disjunction (P +Q)~(-P v O)
Law of Negation for Implication - (P +Q) ~ p & -o
Laws for Bicondlonal Sentences (P ~ O) ~(P +Q) & (O + P)

(P ~ Q)~(P & Q) V (- P & - Q)

Laws of the Excluded Middle
Law of Contradiction

Legend: For spa<:e considerations,

P V -P
-(P & -P)

~ means "Bl-IMPLIES" (logical equivalence)

+ means " IMPLIES"

& means " AND"

- means "NOT"

V means " OR"

FIGURE 2. Some useful tautologies of two-valued propositonal logic.

JANUARY 1994
56

I l I I I l I I I I I I I I I I I
- " .Y~ ·'- . ·' ', ~ ~~:~:". <:!. ·. 5 ,,,

s S# SN AME STATUS CITY SP! SI P# QTY

S1 Smith 20 London S1 P1 300

S2 Jones 10 Paris S2 P1 300

S2 P2 400

p P# PNAME COLOR WEIGHT CITY

P1 Nut Red 12 London

P2 Bolt Green 17 <null>

FIGURE 3. Troublesome rows in the Parts-Suppliers database.

known city. And since suppliers
are defined as supplying parts, by
extension they are no longer sup
pliers of parts located in a known
city. Thus, querying the suppliers
table S-which contains no nulls
-results in a fundamentally dif
ferent kind of answer when the
parts table P is allowed to have
nulls in one of its columns.

Readers might object that I
have chosen a particular interpre
tation of null to illustrate these
problems, but I invite them to con
sider other interpretations as an ex
ercise. DBMS use of many-valued
logics requires teaching an entire
ly new way of thinking to all your
database designers, developers, and
users. The cost of this approach is
hard to assess in practice. It is at
odds with the goals we set out to
satisfy with an RDBMS.

What about the truth func
tional completeness and the deduc
tive completeness objectives? Some
times we can make a many-valued
logic truth functionally complete
by adding a new axiom or connec-

T T
F T T F F

tive, such as the T-function men
tioned earlier, to the set of axioms
and primitive connectives. How
ever, this approach has at least one
of three undesirable consequences:
producing theorems that have no
counterpart in two-valued logic,
making the system inconsistent, or
making the system incomplete. In
deed, based on work by the logi
cian Rose,' avoiding the first possi
ble consequence forces us to <:hoose
between the other two out.comes.
In particular, as long as the system
does not contain certain types of
undesirable theorems (having no
counterpart in the p ropositional
logic and, therefore, violating the
familiarity objective), Rose showed
that either the new axiom makes
the system inconsistent, o r the
new axiom is a tautology of the
propositional logic (in other
words, something we intuitively
thought was already true, but actu
ally was not).

The second possible conse
quence (inconsistency) is clearly
undesirable since it means that ev
ery wff becomes a tauto logy, even
one that would otherwise be con·
sidered a contradiction. (In an in·
consistent system, you can prove
anything.) Suppose an SQL SElECT
was issued against a database man-

F F T

T

T

T

T

T

F T

F

F

F

F

T

F

Now consider the distinction
between the shaded row being per
mitted and actually appearing in
the database. Whereas the row be
ing permitted changes the mean
ing of the entities represented by
tables, the actual appearance of the
row changes the meaning of a que
ry result even w hen the row is de
liberately excluded! For example,
suppose we try to follow a "no
nulls" discipline and want to see
only those suppliers "unaffected"
by the shaded row. To select these
suppliers, I must first presume the
existence of a relationship to rows
similar to the shaded one, and
then use this relationship to ex
clude affected suppliers. In pseu
do-SQL, something like "SELECT •
FROM S MINUS (SELECT • FROM S, SP, P WHERE
S.S# = SP.S# AND SP.P# = P.P# AND
CITY IS NOT NULL)" is required. If the
shaded row does not exist, these
suppliers provide, if anything at
all, the type of parts that might or
might not be definitely located in
a known city. H owever, if the
shaded row appears in the data
base, this same list of suppliers
definitely does not supply the spe
cific parts indefinitely located o r
locatable! As strange as it seems,
when a row similar to the shaded
one appears in the database, the
results to our " null avoiding" que
ries become more definite regard
ing the indefinite. FIGURE 4. The 16 tWCJ-place connectives of two-valued logic.

DATABASE PROGRAMMING & DESIGN
57

I I I I I I I I I I I I I I I I l
. , - .

Truth Values One-place Connectives Two-p lace Connectives

2 4 16

3 27 19,683

4 256 4,294,967 ,296

n n " n"
2

Fl&lllE 5. Number of connectives versus number of truth values.

aged by a DBMS based on such a
system. Regardless of the predicate
in the w.lRE clause, th is predicate
would be treated as "TRUE" for all
column values tested, and would
therefore never restrict the result
set!

For the .third consequence
(the new axiom is a tautology) to
be applicable, the system cannot
be an extension of the proposition
al logic (since this approach re
quires adding a many-valued tau
tology and will result in an
inconsistent system). Therefore, it
is either a fragment (and subject to
the problems discussed earlier for
such many-valued logics) or a
deviant.

MORE ROPE, PLEASE!
Suppose we are willing to violate
the truth functional completeness
objective, under the assumption
that the theorems that cannot be
expressed (due to missing means
of representing some connectives)
are, in some sense, obscure. Per
haps .we are even willing to vio
late part of the familiarity objec
tive under th e assumption that
learning new tautologies and rules
of inference is not an excessive
task. Even so, a many-valued logic
introduces further undesirable com
plexities. These complexities in
clude the number of connectives,
the number of meaning assign
ments for connectives, meanings
of query results, arbitrariness in
the number of truth values, loss
of deductive power, and unusual/
nonintuitive semantics. I'll briefly
discuss each of these complexities.

rapidly w ith the number of truth
values (refer to Figure 5). For a
3VL, 19,683 two-place connectives
exist, as compared to the 16 of or
dinary two-valued logic.6

Of course, even in the two
valued propositional logic we do
not normally need to remember or
use all of these connectives explic
itly: a few suffice to express all the
others, which is the essential im
portance of truth functional com
pleteness. Likewise, we do not
need to memorize all possible con
nectives in a many-valued logic if
the primitive set is truth function
ally complete. The number of con
nectives required can be very few.'

But if, as assumed, the system
is not truth functionally complete,
users must be prepared to use and

p p

F +T

u u +U

T -F

p NOT P p

+T F +T

u F +U

- F T -F

p NOT P p

+T F +T

u T +U

-F T -F

legend: "+ " aignlties designated

understand all 19,683 dyadic con
nectives (in the three-valued case)
to express a query! Such complex
ity is beyond most users' grasp;
not only would they find it frus
trating, but the user will probably
make mistakes, using the wrong
connective fo r a desired result.
This same complexity applies to
the optimizer's design and the
amount of code required to imple
ment it.2

In addition to increases in
syntactic complexity due to the
number of connectives, the num
ber of distinct meaning assignments
for connectives increases as well. As

· noted earlier, any truth value can
be treated as true-like (that is, des
ignated), false-like (antidesignated), .
or neither (undesignated); these
distinctions are necessary for iden
tifying tautologies and contradic
tions in many-valued logics. For
example, in a 3VL, three distinct
one-place connectives could be
called negation. With the addi
tional complexity of unknown be
ing designated, antidesignated, or
undesignated, the number of pos
s ible meaning assignments for
"negation" expands to nine (see
Figure 6)! Trus complexity violates
one of the motivations .for using a

p NOT P

F +T F

u -U u
T -F T

NOT P p NOT P

F +T F

F -U F

T -F T

NOT P p NOT P

F +T F

T -u T

T -F T

" - " algnlflea 11ntldealgnated

The number of connectives in a
logic depends combinatorially on
the number of permissible trut~
values. In the familiar two-valued
logics, 16 possible two-place con
nectives exist (refer to Figure 4).
The number of connectives grows FIGURE 6. Possible meaning assignments of three-valued "NOT."

JANUARY 1994
58

logical system in the first place.
Surely users do not wish to work
with such a DBMS.

If the users and designers of
a database do not agree on the
meanings of query results, confu
sion is inevitable and results in a
loss of data integrity-users will
eventually update the database in
ways that violate the intended, but
unenforceable, data meaning. To
assign truth values to propositions
or arguments (the process of de
fining an intended interpretation),
the database's designer must have
a consistent understanding of
what each truth value means (our
uniformly interpretable objective).
This meaning must be understand
able to users and consistent with
the connectives and rules of infer
ence. Although the meaning of in
dividual truth values (as used, for
example, in the relational model)
may appear to be reasonable, they
can have nonintuitive or incorrect
consequences. Codd categorizes
these problems as being either
"mildly incorrect" (meaning an ex
pression is evaluated as unknown
when· it is actually either true or
false) or "severely incorrect"
(meaning an expression is evaluat
ed as true or false when it is actu
ally unknown).7 Either way, the
possibility of an incorrect response
from the DBMS means "don't trust
the DBMS!" It is equivalent to say
ing: "When you use a calculator,
sometimes 1 + 1 = 2 and some
times it doesn't, so check it your
self."7 (If this is the case, why even
use the calculator?)

The number of truth values in a
many-valued logic can be arbi
trary, in that the number required
cannot be established definitively.
If users think of "UNKNOWN" as inter
mediate between "TRUE" and "FALSE"
in a 3VL, no intuitive reason exists
to stop at three truth values. In
fact, some motivations exist for im
mediately extending the number
of truth values. For example, Codd
suggests a four-valued approach
with unknown and inapplicable.
What if we need to insert a row in
a table, but don't know if the miss
ing value is properly described as
the "UNKNOWN" truth value or the "IN
APPLICABLE" truth value? This prob
lem leads to the need for a fifth
value. Where does the process
end?'·"

I I I I I I I i I I I I I I I I I

No many-valued
logic will be
suited to a

DBMS's needs
Two-valued logical systems

can sometimes be uniformly ex
tended to handle an arbitrary
number of truth values, assuming
that properties such as complete
ness are not important. However,
as the number of truth values in
creases, the number of tautologies
in these systems generally de
creases. Since tautologies are among
the essential tools of deduction,
this process results in a practical, if
not formal, loss in deductive pow
er. And let_ us not forget the impli
cations for optimizers: This DBMS
component not only offers perfor
mance improvements, but also en
ables data independence! Among
other things, an optimizer that
uses many-valued logic is less like
ly to recognize the equivalence
(via a suitable semantic transfor
mation) of two expressions, and is
less likely to be able to reduce a
complex expression to a simpler
one (via rules of inference and
tautologies) than one using stan
dard two-valued logic. This result
would not be a problem were it
not for the particular tautologies
that are often affected by many
valued logics.6

•
8 For example, "(P IM

PLIES P) Bl-IMPLIES ((NOT P) OR P)," although
intuitively is always "TRUE," is not
a tautology in some many-valued
logics!

The impact of this loss in de
ductive power is serious. Most op
timizers effectively give up when
faced with many-valued logic,
making no semantic transforma
tions whatsoever. Some even fail
to use an index if the indexed col
umns can contain nulls, whether
they actually do or not! Certainly,
this reduction in deductive power
makes it much more difficult for
users to reason toward a desired
answer using a sequence of que
ries. The poorer the optimizer in
this regard, the more the user
must "optimize by hand," careful
ly selecting the exact manner in
which a query should be expressed
(two expressions are not likely to

DATABASE PROGRAMMING & DESIGN
59

be equivalent except for specific
values of arguments). And this sit
uation means the user must under
stand the logical system very well
and be willing to give up logical
data independence.

Although interesting from a
formal perspective, the many-valued
logic proposed by Codd (and relat
ed proposals by Vassiliou, Lipski,
and Biskup) leaves much to be de
sired from the perspective of un
derstandable semantics. In particu
lar, as elaborated by Grahne,13 each
occurrence of an A-mark (applica
ble but unknown) in a table can be
seen as a shorthand for a set of ta
bles, each obtained by substituting
a permissible value for the A
mark. To construct understandable
queries in such a system, the user
must somehow keep in mind all
the possible substitutions. Although
these formal systems may be inter
esting, such semantics can make
them nonintuitive and error
prone_ In an informal poll I con
ducted of approximately 30 data
base designers and administrators,
all of them expressed amazement
at this interpretation and felt that
it was unacceptable_

OTHER SYSTEMS
The most common versions of
many-valued logic are variations
on other systems, such as those de
veloped by Lukasiewicz, Post, and
Kleene. Variations of Lukasiewicz's
systems are sometimes referred to
as the basis for SQL's 3VL. While
this supposition cannot be true,' it
is worth examining the properties
of the Lukasiewicz systems. Luka
siewicz systems are not truth func
tionally complete (so the system
would not be able to verify some
facts using the available opera
tors), nor are they natural exten
sions of the classical propositional
logic. Certain tautologies of the
propositional logic cease to be true
in the Lukasiewicz systems, and,
conversely, certain tautologies of
the Lukasiewicz systems have no
counterpart in the propositional
logic. In our terminology, they are
deviants.

Lukasiewicz's were intended
to treat contingent (especially fu
ture contingent) propositions as
meaning "temporarily unknown."
The "UNKNOWN" in his 3VL is similar
to Codd's A-marks. For example,

the truth value of "It will rain to
morrow." would be "lH<tllWN," but
would eventually be determined
as either "TlUE" or " FALS£." There
fore, the Lukasiewicz " UNKNOWN'' is a
temporary placeholder for a stan
dard truth value. These various
facts about Lukasiewicz systems
eliminate them from farther con
sideration: They are not candidates
for use as a DBMS's logical system.

We can prove that some
many-valued logics are truth func
tionally complete (all are consis
tent by definition if at least one
truth value is undesignated), but
have semantics clearly inappropri
ate for a DBMS. Here are a few ex
amples: In Pos t's systems, truth.
valuations apply only to sets of
propositions (that is, sets of rows),
each individual proposition hav
ing a classical truth valuation,

I I I I I I I I I I. I I I I I· I I
rather than the individual propo
sitions. Kleene had in mind the
truth valuations of propositions
involving mathematical functions
undefined for certain ranges of
predicate values. The concept of
undefined is similar to the pur
pose of Codd's I-marks. Bochvar
created a system with a set of "in
ternal" truth tables and a set of
"external" truth tables, treating un
known as "undecidable" or "mean
ingless." This system is similar to
SQL in the sense that SQL effec
tively returns false (the . external
system) to the user when the an
swer is unknown (the internai sys
tem), but Bochvar's systems are
dissimilar in other respects.

"RELATIONAL'S" 3VL
So far, the arguments I have pre
sented are generic; they apply to

: ~.f ~blo>,
- :~A;-1~
t:~·19f iaitially ~en operations
. . ·~i1'1be q~ 1-p.guage .

• . . ·• ~ess any 1~ connec-
... ' -,~le.~.~. b'Uth table. Thu5,

-ID≪ut, trutli. · · ~~~:;;!~I.•' 1 ~ Ykdn the ·,mµverse of dis-
"tiortally ~; ; 'a ··tm:th-~ e<pree&fo.n' will .
ly, decidable. -:Jari4fl~'6i'-•1 ~ *° ~rl'e whether this' fact is
.o\laderstand eeclt W~ ~9-W ~ted in 'the database: .
~the~ln:mih& • "'J. · •~vely .. :a:>Jnplete: ·All

• FamWar;~ ~~are meaningful in the ap
.-nding of~~~ pl~'! 'ClORtect can be expl'eS6ed
tives, rulesm ~,~ a«lftpted and~ relewult fads about the·appli
a.utologies ~ ~ ~- hi catio• e~nt can be captured in
other words.. J:he~.sbnuld ru>t have the database
to learn an tznf.am¥Har ox noriintu.it1v~ • Deductively complete: Every
logical systenft&af_cdhtainuurprising. fact .represented by the database, ei
theorems and 'f.a11to!ogies or denies 1her l.mplidtly or explicitly, can be ob
commonly .held ntles of infereit.ee, ·80 .tai:ned via -a IJUBY·
that erro1$ Of u..ge become more Jikc- • Conmtent The :result of every
.ty to occur. · query tep!'l!Sents facts that can be in-

• Uniformly ,int-erpretable: The lerxed from the database.
jptended interpretati~n of evezy- syin.- W Decidable: Although not
bol, truth value, and query should be strictly required, a decidable and ron
unainbiguous, irtespective .of the da~ sistent system allows a query to be
l;lase's state. . _ checked via an al.gorithm to ~ermine

• Truth functional: A query's if jt is (1) a tautology {since every
ev~uation· (a wff) can proceed me-- theorem in. a consist.ent eysteni is a

-~catty ·from the evaluation of its tautology~m thi& ·case ·eYery row
·components; .similarly, qume5 of arbi- would aatist)' the J1¥icate), (2J a ccin
-tiary a>mplexity •CIU\ be written arid tn.dktion {in which ~ ·no mws
.andetstoOd from.a understanding of .cx>uld ~er . .amfy the~), or (3)
.:tbe..amnecthreti ale:ne. ' ~ther. · . ~,.-., · · .~.-.-.-~ ·-- _

1t Truttt .fun,,+jowlly complete: ~ ·4y ~-Mc:Gov.eran

JANUARY 1994.
60

many-valued logics generally.
However, the problems raised can
not be fixed . Indeed, formal logi
cians do not perceive them as
problems that must be fixed! Al
though my thesis is that no many
valued logic is suitable for the a
DBMS's needs, I feel compelled to
point out a few problems that ap
ply specifically to the 3VL and
4VL described by Codd and the
3VL implemented in SQL

D As I noted at the begin
ning of this article, this discussion
of the problems associated with
using a many-valued logic in a
RDBMS was 'forced to be general,
because the 3VL used in Codd's
version of the relational model is
not completely defined. The situa
tion is even worse in SQL, in part
because the definition is only im
plicit (rules of inference, axioms,
and primitive connectives are not
specified)! In particular, the sys
tem is definitely not a Lukasiewicz
system, nor is it one defined by
Post, Kleene, or Bochvar. What,
exactly, is this logical system's
definition?

0 The rules of inference are
unspecified. We can assume that,
since subqueries are supported, a
limited rule of substitution is sup
posed to hold. What about other
standard' rules such as modus pon
ens (if "P IMPl..ES Q" and "P," then
"Q")? A many-valued logic has
multiple forms of this rule (two
for 3VL). If modus ponens is sup
posed to hold, it is important to
say which of the forms are intend
ed. Similar concerns apply to other
rules of inference such as modus
tollens and DeMorgan's Laws.

D Although most many
valued logics are based on an ex
tension to the propositional logic,
the relational model is supposedly
based on first-order predicate log
ic . Certainly SQL defines the "[)(.
ISTS" quantifier and, so long as
nulls are excluded, the "FORALL"
quantifier can be simulated. Un
fortunately, no d iscussion of a·
many-valued first order predicate
logic exists in the relational mod
el, nor of how the relational model
fares without appeal to first-order
predicate logic. How the formal
system should treat quantifiers,
and what special roles of inference
apply is left largely to our imagi
nation. At best, we know that both

the relational model and SQL treat
"EXISTS" as a finite interation of "OR''
and so, in practice and as long as
nulls are not permitted, the logical
system is at best the finite version
of the first-order predicate calcu
lus mentioned in the beginning of
this article. 5

WHAT SHOULD WE DO?
The criticisms of many-valued log
ics in this article as they apply to
use in DBMSs have simple, practi
cal consequences. Based on these
results, I recommend adherence to
the following guidelines:

0 Avoid nulls and many
valued logic.

0 Do not use SQL operations
such as outer join and outer union,
which create nulls.

D Until you can implement
these first two actions, review the
meanings of queries and query re
sul ts carefully: The more complex
the query, the more important this
step is.

D Lobby vendors to drop
support for nulls and many-valued
logic from their products.

D Ask vendors to make full
use of first-order predicate calcu
lus in their optimizers.

0 Demand that DBMS ven
dors place high priority on the
goals and objectives outlined early
in this article. To this end, they
must recommend against the use
of many-valued logic in their
products, and must oppose it in
the SQL standard.

D Demand that, until ven
dors can comply with these guide
lines, they supply a configuration
option that disables the use of
nulls and many-valued logic at the
system level.

To summarize somewhat
glibly, the key conclusion readers
should draw from this technical
discussion is that "nothing" is to
be gained from "nothing"; ~oth
ing compares to the two-valued
approach. In fact, a great deal of
knowledge, power, usability, per
formance, and maintainability is at
risk if many-valued logic is used
in a DBMS. Apply Occam's Razor:
Eliminate all the nothing from
your databases.

In next month's installment,
I will propose a list of the main
motivations for including nulls
(both I-marks and A-marks) in a

I I I I I I. I I I I I I I I I I I
Nothing

compares to the
two-valued
approach

database and discuss their validity.
Some of these motivations are val
id; this conclusion, along with the
conclusion that many-valued logic
is inappropriate, leaves us in a di
lemma. This dilemma will be ad
dressed in Part IV. •

The author · would like to thank Chris Date,
Hugh Darwen, and Ron Fagin for their helpful
comments and criticisms. 1 would also like to
apologize to Billy Preston (again) and Sinead
O'Connor for the abuse of their song titles.

NOTES AND REFERENCES
1. In fact, a single two-place connective

W will suffice for all many-valued logics.
In a system with n truth values, if the
truth values are represented by the natural
numbers from 1 to n, the binary connec
tive Wis defined as: / PW QI ~ (1 +
(max (IP/ ,/Q/) % n] where /R/ is the truth
valuation of the truth-valued expression R
and% is the modulo operation . (6, p. 65]

2. Contrary to Codd's position on this is
sue, the number of distinct logical connec
tives in the absence of a specified number
of primitive connectives that satisfy truth
functional completeness is not comparable
to the infinite number of distinct arithme
tic functions that can be defined in ordi
nary arithmetic. Instead, this number is
properly compared to the number of dis
tinct arithmetic operations, of which very
few in arithmetic exist (such as addition
and multiplication) from which an infinite
number of arithmetic functions can be
defined.

3. Codd replied to this criticism (7) say
ing, essentially, that an I-mark is a "catch
all" and thus terminates the process. This
statement Is incorrect. Such systems re
quire a mechanical procedure by which
the system can determine which wffs
should be evaluated as corresponding to
the truth value for a simple predicate with
one I-marked variable versus one with an
A-marked variable. At the very least, if A
marks are to be distinguished from I-marks

and vice-versa, such a procedure is implied
by the distinction. Thus Codd's kind of
4VL is not substantially different from the
kind of 4VL described by Date [8] and sus
ceptible to the same troublesome
semantics.

4. Lukasiewicz gave '1MPLIES" and
"NOT" as his primitive connectives, deriv
ing '.'OR" and "AND" from them. Hi.s defi
nition of " IMPLIES" is different from that
used in the propositional or predicare cal
culi, which define "P IMPLIES <:r as:
"NOT P OR Q" (see Figure 7). In fact, Lu
kasiewicz's version of "IMPLIES" cannot
be derived from the definitions of "NOT,"
"AND," and "OR." This is because "NOT,"
"AND," and "OR" each preserve "UN
KNOWN" from the inputs {and therefore
so do any combinations of these), whereas
Lukasiewicz version of IMPLIES does not.
Since SQL does not define IMPLIES,
claims that "it is based on a variant of Lu
kasiewicz's 3VL" must be false!

5. It would be good if this logical system
were the intended one; such a system has
the desirable properties of being both
complete and decidable.

6. Rescher, N . Many-Valued Logic,
McGraw-Hill, 1969, pps. 6.3 and 166.

7. Codd, E. F., and C. J. Date. "Much Ado
About Nothing," Databa.se Programming &
Design, 6(10): 46-53, October 1993.

8. Date, C. J. "NOT is Not NOT!" mn Re
lational Database: Writings 1985-1989, Ad
dison-Wesley Publishing Co., 1990.

9. Suppes, P. Introduction to Logic, Wads
worth, C. 1957.

10. Codd; E. F. "A Relational Model of
Data for Large Shared Data Banks," re
printed in Readings in Database Systems, M.
Stonebraker, ed., Morgan Kaufmann, 1988.

11. Codd, E. F. "Extending the Database
Relational Model to Capture More Mean
ing," reprinted in Readings in Database Sys
tems, M. Stonebraker, ed., Morgan Kauf
mann, 1988.

12. Bole, L., and P. Borowik. Many-Valued
Logics 1: TheMetical Foundations, Springer
Verlag, 1992.

13. Grahne, G. The Problem of Incomplete
Information in RelationJll Databoses, Springer
Verlag, 1991.

14. Delong, H . A Profile of Mathematical
Logic, Addison-Wesley Publishing Co.,
1970.

David McGoveran i1 president of Alt«na
tiYe Technologies (Boulder Creek, Cali
fornia), a relational database consulting
firm founded In 1978. He ha1 authored
numerous technical articles and is'.also
the publisher of the " DatabaM Product
Evaluation Report Series."

U F

U T T U

F T T T

FIGURE 7. Three-valued material implication versus Lukasiewicz implications.

DATABASE PROGRAMMING & DESIGN
61

